Feedback Neural Network for Weakly Supervised Geo-Semantic Segmentation

نویسندگان

  • Xianming Liu
  • Amy Zhang
  • Tobias Tiecke
  • Andreas Gros
  • Thomas S. Huang
چکیده

Learning from weakly-supervised data is one of the main challenges in machine learning and computer vision, especially for tasks such as image semantic segmentation where labeling is extremely expensive and subjective. In this paper, we propose a novel neural network architecture to perform weakly-supervised learning by suppressing irrelevant neuron activations. It localizes objects of interest by learning from image-level categorical labels in an end-to-end manner. We apply this algorithm to a practical challenge of transforming satellite images into a map of settlements and individual buildings. Experimental results show that the proposed algorithm achieves superior performance and efficiency when compared with various baseline models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Feedback in Semantic Segmentation Under Image Level Supervision

Training neural networks for semantic segmentation is data hungry. Meanwhile annotating a large number of pixel-level segmentation masks needs enormous human effort. In this paper, we propose a framework with only image-level supervision. It unifies semantic segmentation and object localization with important proposal aggregation and selection modules. They greatly reduce the notorious error ac...

متن کامل

Weakly Supervised Semantic Segmentation Using Superpixel Pooling Network

We propose a weakly supervised semantic segmentation algorithm based on deep neural networks, which relies on imagelevel class labels only. The proposed algorithm alternates between generating segmentation annotations and learning a semantic segmentation network using the generated annotations. A key determinant of success in this framework is the capability to construct reliable initial annota...

متن کامل

Decoupled Spatial Neural Attention for Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation receives much research attention since it alleviates the need to obtain a large amount of dense pixel-wise ground-truth annotations for the training images. Compared with other forms of weak supervision, image labels are quite efficient to obtain. In our work, we focus on the weakly supervised semantic segmentation with image label annotations. Recent pro...

متن کامل

Weakly Supervised Learning of Affordances

Localizing functional regions of objects or affordances is an important aspect of scene understanding. In this work, we cast the problem of affordance segmentation as that of semantic image segmentation. In order to explore various levels of supervision, we introduce a pixelannotated affordance dataset of 3090 images containing 9916 object instances with rich contextual information in terms of ...

متن کامل

Weakly-Supervised Semantic Segmentation Using Motion Cues

Fully convolutional neural networks (FCNNs) trained on a large number of images with strong pixel-level annotations have become the new state of the art for the semantic segmentation task. While there have been recent attempts to learn FCNNs from image-level weak annotations, they need additional constraints, such as the size of an object, to obtain reasonable performance. To address this issue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.02766  شماره 

صفحات  -

تاریخ انتشار 2016